
HMMPayl: an Intrusion Detection System based on
Hidden Markov Models

Davide Ariua, Roberto Troncia, Giorgio Giacintoa

aDepartment of Electric and Electronic Engineering, University of Cagliari
Piazza d’Armi, 09123 Cagliari, Italy

Abstract

Nowadays the security of Web applications is one of the key topics in Com-
puter Security. Among all the solutions that have been proposed so far, the
analysis of the HTTP payload at the byte level has proven to be effective
as it does not require the detailed knowledge of the applications running on
the Web server. The solutions proposed in the literature actually achieved
good results for the detection rate, while there is still room for reducing the
false positive rate.

To this end, in this paper we propose HMMPayl, an IDS where the
payload is represented as a sequence of bytes, and the analysis is performed
using Hidden Markov Models (HMM). The algorithm we propose for feature
extraction and the joint use of HMM guarantee the same expressive power
of n−gram analysis, while allowing to overcome its computational complex-
ity. In addition, we designed HMMPayl following the Multiple Classifiers
System paradigm to provide for a better classification accuracy, to increase
the difficulty of evading the IDS, and to mitigate the weaknesses due to a
non optimal choice of HMM parameters. Experimental results, obtained
both on public and private datasets, show that the analysis performed by
HMMPayl is particularly effective against the most frequent attacks toward
Web applications (such as XSS and SQL-Injection). In particular, for a
fixed false positive rate, HMMPayl achieves a higher detection rate respect
to previously proposed approaches it has been compared with.

Keywords: Network Intrusion Detection, Anomaly Detection, Multiple
classifiers, Hidden Markov Models, Payload Analysis

Email addresses: davide.ariu@diee.unica.it (Davide Ariu),
roberto.tronci@diee.unica.it (Roberto Tronci), giacinto@diee.unica.it (Giorgio
Giacinto)

Preprint submitted to Elsevier Computers & Security February 3, 2011

1. Introduction

Nowadays Web-based services and social networking platforms are quite
common, and their number is still increasing as the Web-based architecture
is the most frequently used in software deployments. The results of a recent
study by the X-Force team show that approximately 50% of vulnerabilities
discovered during 2009 affected Web applications [1]. In consequence of this,
the security of Web applications is a key topic in computer security.

The protection of Web applications is challenging, because they are in
general large, complex, highly customized and often created by programmers
with poor security background. On the other hand, a requirement that a
tool to protect Web applications is desired to meet is being as autonomous
as possible, i.e., it should not require extensive administration overhead.
Several hardware and software solutions have been developed, and are avail-
able on the market. Among these, Web Application Firewalls are one of
the most frequently used protection tools. Typically, they rely on a set of
rules written by the administrator, who therefore must have an in-depth
knowledge of the applications to be protected. Even if there are solutions
as ModSecurity [2] that offer automated rule update functionalities, tools
that rely only on rule-based approaches do not seem to guarantee sufficient
protection to Web applications. The main reason is that zero-day attacks
are particularly critical for Web applications, because exploiting a vulnera-
bility in an application with a large number of users might allow to quickly
infect a large number of victim clients (e.g., the so-called drive by download
attacks). In our opinion, anomaly detection approaches allow addressing the
limitation of rule-based systems, thus providing for an effective solution.

Anomaly-based systems rely on a model of the normal behavior of Web
applications. We share the definition of “normal behavior” provided by
Maggi et. al. in [3]: the term normal behavior generally refers to a set
of characteristics (e.g., the distribution of the characters of string parame-
ters, the mean and standard deviation of the values of integer parameters)
extracted from HTTP messages that are observed during normal operation.
Starting from this definition, it is quite straightforward defining “anoma-
lous” all those behaviors that significantly deviate from the statistical model
of the normal activity. Obviously this allows anomaly based IDS to fight
off also zero-day attacks. Initially, the main obstacle to the large scale de-
ployment of anomaly based solutions has been the too high false positive
rate, as not all the detected anomalies are actually related to attack at-

2

tempts. Nowadays anomaly detection mechanisms are also deployed within
some commercial products [4, 5, 6].

Several works that focused on anomaly-based high speed classification,
proposed the use of simple statistics on the application-layer payload to
characterize the normal behavior of Web applications [7, 8, 9, 10, 11, 12].
The payload is the data portion of a network packet, that is the portion
of the network packet which carries the HTTP message. According to RFC
2616, the HTTP payload contains the Request-Line plus the Request-Header
fields used by the client to pass additional information to the server [13]. In
this work, we are interested in the analysis of the HTTP payload. The
HTTP payload analysis offers the great advantage that the security of a
Web application can be guaranteed by simply analyzing the network traffic
incoming to the Web server, without a detailed knowledge of how the Web
application is implemented and works.

The statistical models of the payload based on the byte distribution
proposed in [9, 10, 12] do not allow for an in-depth and accurate analysis.
In particular the n-gram-analysis proposed in [9] becomes quickly unfeasible
as the value of n increases, whereas the 2 − ν-gram-analysis proposed in
[12] provides only an approximate representation of the payload. From a
practical perspective, this might lead to a too high false positive rate [9] or
to a low detection rate [9, 10, 12] for those attacks that do not affect the
payload structure too much (e.g. XSS and SQL-Injection).

In order to make this more clear, let us consider the two examples of
attack in figure 1 and 2.

HEAD / aaaaaaaaa ... aa

Figure 1: Long Request Buffer Overflow attack. Bugtraq: 5136

The attack in figure 1 contains a sequence of 4,096 “a” (we omitted a
large number of them for typesetting constraints) which overfills a buffer
producing a Denial of Service. The byte distributions in this packet is def-
initely anomalous with respect to that of a normal packet in consequence
of the pronounced peak corresponding to the “a” character. Any statistical
model of the payload would spot the anomaly allowing to detect the attack.
If the attack also injects an executable code in the victim machine, that
code would appear in the packet after the sequence of “a”. That would be
an even easier situation for the IDS, as the injected code would also contain
non-ASCII characters. In general, the attacks that aim to overflow a buffer

3

in the victim machine contain just the request URI. Consequently they lack
the sequence of HTTP headers (and corresponding values) that are present
in normal payloads.

GET /d/winnt/system32/cmd.exe?/c+dir HTTP/1.0
Host: www
Connnection: close

Figure 2: URL decoding error attack. Microsoft: MS01-020

The attack in figure 2 exploits a fault of the Web server in decoding the
URL. In consequence of it the Web server makes an error in decoding the
URL and a Denial of Service is caused. It is quite evident that the packet
that carries an attack like this looks definitely more similar to a normal
one with respect to that in figure 1. More in general, payload statistics of
attacks similar to the above URL decoding attack example, are not so far
from those of a normal payload. Thus it follows that a simple statistical
model of the payload is sufficient to spot attacks similar to that in figure
1, while a more detailed representation is necessary to detect attacks such
as that in figure 2. Previously proposed approaches suffered in detecting
attacks such as that in figure 2 in consequence of a poor representation of
the payload [9, 10, 12].

In this paper we address the above problems in payload analysis by
proposing a novel solution where the HTTP payload is analyzed using Hid-
den Markov Models. The proposed system, named HMMPayl, performs
payload processing in three steps as shown in figure 3. First of all, the
algorithm we propose for Feature Extraction (step 1) allows the HMM to
produce an effective statistical model which is sensitive to the “details” of
the attacks (e.g., the bytes that have a particular value). Since HMM are
particularly robust to noise, their use during the Pattern Analysis phase
(step 2) guarantees to have a system which is robust to the presence of at-
tacks (i.e., noise) in the training set. In the Classification phase (step 3) we
adopted a Multiple Classifier System approach, in order to improve both the
accuracy and the difficulty of evading the IDS. Besides, the MCS paradigm
guarantees that the weaknesses of classifiers due to a sub-optimal choice of
initial parameters are mitigated. In the same step, we also evaluated the
performance of a classifiers selection approach that provides an upper bound
on accuracy and may suggest some guidelines to exploit the combination of
classifiers [14].

4

Figure 3: A simplified scheme of HMMPayl.

We deeply tested HMMPayl on several datasets of legitimate traffic and
attacks. In addition we performed an in-depth comparison with some other
IDS based on payload analysis that have been recently proposed in the liter-
ature. In particular we compared HMMPayl with two network-based IDS,
namely McPAD, and Spectrogram [12, 15], and a host-based IDS, namely
HMM-Web [16]. Other well known IDS such as PAYL and Anagram have
not been included in this comparison since they are not as effective as more
recent solutions such as McPAD and Spectrogram [12, 15]. Experimental
results show that HMMPayl is able to achieve good results with respect to
the other IDS it has been compared to.

The rest of the paper is organized as follows. In section 2 we summa-
rize the most relevant related works, whereas in section 3 we give some
background on Hidden Markov Models, classifier fusion and selection. In
section 4 a detailed description of HMMPayl is provided. In sections 5 and
6 we describe respectively the experimental setup and results. In section 7
we evaluate the computational cost of HMMPayl. We then draw our con-
clusions in section 8.

2. Related Work

A number of payload-based anomaly IDS have been proposed in the
literature. In the following we will briefly review the main characteristics of
previously proposed solutions.

In [7] Kruegel et al. describe a service-specific Intrusion Detection Sys-
tem. They combine the type, length, and payload byte distribution of the
service requests to build a statistical model of normal traffic that is used to
compute an anomaly score.

5

Netad monitors the first 48 bytes of IP packets [8]. A number of sep-
arate models are constructed corresponding to the most common network
protocols. An anomaly score is computed in order to detect rare events.

In PAYL, intrusions are detected by analyzing the distribution of bytes
inside the HTTP payload [9]. In particular, the analysis performed by
PAYL is known as n-gram-analysis, and has been originally used for text-
classification [17]. By n-gram-analysis, a payload is represented through a
vector containing the relative frequencies of n-grams, that are sequences of
contiguous bytes. If n = 1, the histogram of the byte distribution in the
payload is drawn. The relative position of different bytes inside the pay-
load is not taken into account, so that the structure of the payload is not
modeled. To model the structure of the payload, a value of n ≥ 2 should
be considered. Unfortunately, the representation of the payload by n-gram
analysis generate a feature space of size 256n. It is easy to see that as the
value of n increases the problem becomes quickly intractable, and we would
never see enough training data to properly fit a full n-gram distribution.
This is the reason why in a real scenario a value of n greater than 2 can’t
be used. Another element that must be considered is that the distribution
of n-grams changes with the length of the payload. For example, large pay-
loads are more likely to contain non-printable characters which are typical
of media formats and binary representations. To take into account different
payload lengths, PAYL employs a different model for each different length
range.

The developer of PAYL presented an improved version in [10]. In partic-
ular, the new version builds a number of models for each packet length, and
performs inbound and outbound traffic correlation to detect the propagation
of worms.

In [11] Wang et al. propose a solution called Anagram where n-grams
are extracted from both legitimate and intrusive traffic. Anagram stores all
the n-grams extracted from the normal traffic, and trains a Bloom filter.
Another Bloom filter stores the n-grams extracted from known malicious
packets. At detection time, the packet is scored on the basis of the number
of unobserved n-grams. The number of malicious n-grams is used to weight
the score. In Anagram the problem is represented as that of distinguishing
between two classes of patterns, namely the normal class and the malicious
class. It is worth noting that in our approach (HMMPayl) we adopt a one-
class approach, as we do not consider anomalous patterns for training. So
Anagram is fundamentally different from HMMPayl.

In [12] Perdisci et al. propose an IDS called McPAD, which implements
a feature extraction algorithm that can be considered as an approximation

6

to the n-gram analysis. McPAD models the payload of normal traffic using
a 2-ν-gram analysis, where relative frequencies of pairs of bytes that are
from 0 to ν positions away from each other are calculated. The payload is
thus represented in ν+1 different feature spaces, and a one-class classifier
is trained on each feature space. The main advantage of McPAD with
respect to PAYL is that it is possible to approximate an n-gram analysis
with n bigger than 2 by combining the ν+1 classifiers trained in different
feature spaces of size 2562. For example, if ν is equal to 10, it is possible to
approximate an n-gram analysis with n = 12, that would require a feature
space of size 25612. The drawbacks of this approach are that McPAD only
approximates a full n-gram analysis, and that a different classifier for each
feature space must be trained.

Markovian models and Hidden Markov Models have been used for mod-
eling computer security problems only recently, whereas they have been
originally used in applications such as speech recognition [18], handwritten
text recognition [19], and biological sequence analysis [20]. In the field of
computer security, HMM have been largely employed in host based Intru-
sion Detection. The seminal work in this direction is that of Warrender et
al., where HMM are used to model system call sequences [21]. In [22] HMM
have been used to model privilege flows, while in [23] Gao et al. propose to
use HMM for computing a behavioral distance between processes.

Markovian Models have been also proposed for the development of tools
to protect Web Applications. In [24] the authors proposed a framework
to detect attacks against Web servers and Web-based applications. Attack
detection is performed by multiple model, including a Markov Model that
models the request URI.

Spectrogram is another sensor that aims at detecting Web-layer code
injection attacks by operating above the packet layer [15]. Spectrogram uses
a mixture of Markov chains to address the “curse of dimensionality” problem
arising from the need for a large value of n in the n-gram analysis. In
particular, Spectrogram models the portion of the request URI containing the
sequence of attributes (and values) received as input by a Web application.
Spectrogram, as well as HMMPayl, does not take care of the details of the
Web applications that are hosted by the Web server. For instance it is not
important to know how many applications are running on the Web server or
which kind of input each application receives. This is a consequence of the
architecture of these IDS, since both solutions are based on a single model
that is used to classify all the traffic toward the Web server. This model is
a mixture of Markov chains for Spectrogram, and an ensemble of HMM for
HMMPayl.

7

It is worth noting that the payload analysis performed by the above IDS
is carried out by considering the raw sequence of bytes. On the other hand,
a model of the payload can be attained by taking into account the detailed
knowledge of the applications hosted by the Web server. In this case, the
analysis of the payload takes into account its semantic. This approach has
been used in HMM-Web that is made up of multiple modules, each module
being related to a particular application in the Web server [16]. This detailed
model allows HMM-Web being particularly accurate in detecting Web-layer
code injection attacks. On the other hand, such an IDS is completely blind
with respect to attacks that do not exploit Web applications vulnerabilities
(e.g. attacks that exploit Web server vulnerabilities). Another drawback is
the fact that even small modifications of the applications hosted by the Web
server, require the IDS being re-trained.

One of the reasons which initially motivated the ideas beyond the devel-
opment of HMMPayl was the consideration that HMM, as well as n-grams,
have been widely used in text classification [19]. In particular, it has been
shown that HMM and n-grams are rooted in the same theoretical model [25].
In particular, HMM as well as n-grams can be described using a stochastic
finite state automata (sFSA) [15, 20, 26].

In spite of the same expressive power, HMM offers a great advantage
with respect to n-grams in modeling sequences of bytes, While n-grams
produce feature spaces of size 256n, HMM can process sequences of any
size, without differences in computational complexity. Thus we expect to
produce an effective representation of the payload. It is worth noting that a
similar approach has been proposed in Spectrogram [15]. This work, which
has been developed independently from Spectrogram, propose an original
representation of the payload, and a multiple classifier architecture.

3. Theoretical Background

3.1. Hidden Markov Models
Hidden Markov Models represent a very useful tool to model data-sequences,

and to capture the underlying structure of a set of strings of symbols. HMM
is a stateful model, where the states are not observable (hidden). Two proba-
bility density functions are associated to each hidden state: one provides the
probability of transition to another state, the other provides the probability
that a given symbol is emitted from that state.

According to [18], an HMM λ is characterized by the following elements:

• N, the number of states in the model.

8

• M, the number of distinct observation symbols per state, i.e. the
discrete alphabet size.

• A, the state transition probability distribution. In our case is a NxN
matrix.

• B, the observation symbol probability distribution. In our case is a
NxM matrix.

• π, the initial state distribution. Each element πi is the probability
that the initial state is the i-th state.

Since HMMPayl is an anomaly based system, we can distinguish two
different operating phases. In the first phase we train the IDS (that is
we estimate its parameters). Then, in the “Detection” phase the IDS can
be used to analyze the network traffic. In particular, during the “Training”
phase the estimate of the HMM parameters (that is A,B and π) is calculated
with the goal of maximizing the probability assigned by the model to the
sequences within the training set. This problem is usually solved iteratively
by resorting to the Baum-Welch algorithm [27].

During the “Detection” phase the problem is that of estimating the prob-
ability of a sequence for the model obtained after training. This problem
(usually referred to as “Evaluation”) is solved using the Forward-Backward
procedure [28, 29]. The Forward-Backward procedure calculates the prob-
ability of the sequence evaluating all the possible sequences of states that
can generate the sequence.

3.2. Multiple Classifier Systems
Multiple Classifier Systems (MCS) are widely used in Pattern Recogni-

tion applications as they allow to obtain better performance than a single
classifier. Reasons why an MCS could perform better than a single classifier
have been deeply investigated in the literature, and the effectiveness of MCS
for computer security has been also shown [12, 30, 31].

Basically, an MCS exploits the decisions made by an ensemble of classi-
fiers, and combines these decision to obtain a better classification. According
to [32], there are at least three reasons for which an ensemble results more
accurate and robust of any classifier in the ensemble:

• The statistical reason. A learning algorithm can be viewed as a search
for the best hypothesis in a space H of hypotheses. In consequence of
the finite size of the training set, the learning algorithm will usually

9

end up with a number of classifiers that achieve the same accuracy
on the training data. These classifiers, however, may not produce the
same accuracy on unseen data. By constructing an ensemble out all
of them, the risk of choosing the wrong classifier can be reduced.

• The computational reason. In many cases the optimal training of
a classifier is a NP-hard problem: consequently, most learning algo-
rithms usually aim at finding a local optimum of the target function.
This optimum usually depends on the starting point. This means that
by running the local search from different starting points, and using
the obtained classifiers to build an ensemble, a better approximation
of the true unknown function can be attained.

• The representational reason. In most machine learning applications,
the true function for the problem at hand cannot be represented by any
of the functions available in H . The use of weighted sums of hypothe-
ses drawn from H may allow expanding the space of representable
functions.

In this paper we use the MCS paradigm to combine different HMM. A
general schema of the proposed HMM ensemble is shown in figure 4. A
payload xi is submitted to an ensemble H = {HMMj} of K HMM, each
HMMj produces an output sij, and their outputs are combined into a “new”
output s∗i .

Figure 4: A general schema of a MCS based on HMM.

Different combination strategies for building a MCS have been proposed
in the literature. They can be roughly subdivided into two main approaches,
namely the Fusion approach, and the Dynamic Selection approach. In the
following, a brief overview of these combination strategies is given.

3.2.1. Classifier Fusion
This strategy fuses the outputs of an ensemble of classifiers to produce

a single output. A large number of fusion functions is available from the
literature, each one with its pros and cons. One of the basic assumptions of

10

the fusion strategy is that combined classifiers are considered as competitive
rather than complementary.

In this paper we will consider the Maximum, the Minimum, the Mean
and the Geometric mean rules.

• the Maximum rule:
s∗i = max{sij} (1)

• the Minimum rule:
s∗i = min{sij} (2)

• the Mean rule:

s∗i =
1
K

K∑

j=1

sij (3)

• the Geometric mean rule:

s∗i =

K∏

j=1

sij

1
K

(4)

These static rules are widely used in Pattern Recognition to combine
classifiers because they allow achieving good results in spite of their sim-
plicity. Nevertheless, trained combination rules have been also proposed
to better exploit additional knowledge of the domain at hand. As pointed
out in [33], combining classifiers using static rules is a suboptimal solution,
whereas trained combination rules are asymptotically optimal. Despite this,
in this paper we used static rules for two main reasons. One reason is re-
lated to the issues involved in building a trained combiner that make its
design a non trivial task. The other reason is that static rules are very fast
to be computed, and thus the additional computational cost is very small
compared to the one typically required by trained combination rules.

3.2.2. Classifier Selection
Classifier Selection is based on the assumption that each classifier in

a given ensemble exhibits a higher “expertise” than others on a subset of
patterns. For each pattern to be classified, the system selects the classifier
which is considered to provide the highest accuracy for the pattern at hand.
It is easy to see that the main difficulty with this approach is the development
of the selection criterion. On the other hand, it can be easily shown that
if the selector works properly, very high accuracy can be attained. For this

11

reason, in this work we will only refer to the so-called “Ideal Score Selector”
that provides an upper bound to the performance that could be achieved by
the HMM ensemble employed in HMMPayl.

The “Ideal Score Selector”, proposed in [14], represents the upper bound
of the selection strategy. The output of such Ideal Score Selector can be
computed as:

s∗i =
{

max{sij} if xi is a normal pattern
min{sij} if xi is an attack pattern (5)

It can be seen that the selector is “ideal” as the selection function requires
the knowledge of the true class the pattern belongs to.

An example of the result attained by the Ideal Score Selector is shown in
figure 5, where two classifiers are combined. In particular, for each classifier
the distribution of the output values for the two classes is shown. It is easy
to see that the distribution of the output values of the Ideal Score Selector
allows a better separation between the classes with respect to each of the
combined classifiers.
It can be easily seen that the above Ideal Score Selector exhibits a better
ROC curve than the ROC curves of each individual classifiers used in the
combination, and consequently a larger AUC [14]. Moreover, it has also
been shown that the Ideal Score Selector always attains a larger AUC than
that obtained by the linear combination, whatever the value of the weights,
and the number of classifiers [14].

4. IDS Architecture

This section provides the detailed description of the architecture of HMM-
Payl. Since HMMPayl is an anomaly based system, it requires a Training
set made up of normal traffic. The Training phase outputs the Transition
and Emission matrices for each HMM included in the IDS. The details on
the choice of the initial parameters of the HMM, and on the selection of the
training data are reported in section 5.

Here, we will go into details of the Detection phase of HMMPayl. We
have already shown in section 1 that each HTTP payload is processed in
three different stages: (a) Feature Extraction, (b) Pattern Analysis and
(c) Classification.
In Subsections 4.1, 4.2, and 4.3 we will analyze in detail each processing
stage. In addition, we will evaluate the complexity of the algorithm in
Subsection 4.4.

12

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Expert 1

Score

 Normal Score Distribution
Attack Score Distribution

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Expert 2

Score

Normal Score Distribution
Attack Score Distribution

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ideal Selector

Score

Normal Score Distribution
Attack Score Distribution

Figure 5: An example of Ideal Score Selector with two classifiers on a real dataset. The
distributions of the output values resulting from the ideal selection exhibit a larger sepa-
rability than the original ones.

4.1. Feature Extraction
The most critical task in designing an IDS is that of choosing good

features. The main problem in Intrusion Detection is that the “target is
moving”, i.e., new attacks appear every day, and a number of variants of
known attacks are developed, so that attack modeling is a very hard task.
Moreover, when the resources to be protected change frequently as in the
case of Web applications the problem becomes even more difficult [3]. As a
consequence, having good features is crucial because they should not only
model the normal traffic, but also allow distinguishing known and possibly
never-seen-before attacks. In addition, the features should be chosen in a
way that makes difficult for an attacker to craft an attack whose representa-
tion in terms of the selected feature is similar to normal traffic. The above
considerations have been taken into account when selecting the features to
be used in HMMPayl.

At a low level, a HTTP payload is not more than a sequence of L bytes,
where L is the value of the payload length. As HMM are able to analyze

13

sequences of data, it would be possible to feed the HMM with the payload
as it is. Although it would be a very simple solution, it has two considerable
drawbacks. The first one is that the longer the payload, the smaller the prob-
ability associated to it. This is a consequence of the fact that the number of
products performed by the Forward-Backward procedure increases with L
(see section 3.1). From a practical point of view, this behavior of HMM in-
creases the risk of having long normal payloads classified as intrusive, while
short attack payloads classified as normal.

The second drawback is related to the fact that HMM work better if
the length of the processed sequences is equal to (or at least close to) the
number of states of the models. This would not be possible if the payload
would be processed as it is for several reasons: (a) the length of the payloads
may change (b) HMM having hundreds of states are not manageable (the
typical length of the HTTP payload is several hundreds of bytes).

These are the reasons why we propose the following approach to represent
the payload. A window of width “n” slides over the payload byte by byte,
and each group of n bytes that falls inside the window is considered as a
sequence. Starting from a payload P , the sequence extractor produces as
output a set O of sequences. Given the length of the payload L and the
width of the window n, the number of sequences N in O is equal to:

N = L − n + 1 (6)

In order to better illustrate the features extractor of HMMPayl, we will
use a toy example. Let us consider the following very short payload made
up of 10 bytes, and let us also assume that the bytes can take only three
values, namely, 0, 1 and 2.

2 1 2 0 0 1 2 1 0 2

Let us now consider a sliding window of size n equal to 5. Thus it follows
that the number of sequences extracted from the payload is computed as N
= 10-5+1 = 6. The set of sequences that are extracted from the toy payload
is represented in figure 6.

Thus, a payload P is represented by a set O of N of sequences of length
n. Each sequence will then be processed by the HMM, and the probability
for P of being emitted by the HMM will then be computed as a combination
of the outputs for the N sequences in O. It is easy to see that payloads with

14

2 1 2 0 0 1 2 1 0 2 → Sequence 1: 2-1-2-0-0
2 1 2 0 0 1 2 1 0 2 → Sequence 2: 1-2-0-0-1
2 1 2 0 0 1 2 1 0 2 → Sequence 3: 2-0-0-1-2
2 1 2 0 0 1 2 1 0 2 → Sequence 4: 0-0-1-2-1
2 1 2 0 0 1 2 1 0 2 → Sequence 5: 0-1-2-1-0
2 1 2 0 0 1 2 1 0 2 → Sequence 6: 1-2-1-0-2

Figure 6: The extraction of sequences from a toy payload

different lengths L will be translated into sets containing a different number
of sequences, the size of each sequence being constantly equal to n.

Our approach addresses the problem of payload representation, and of-
fers several advantages with respect to other works, namely PAYL [9] and
McPAD [12]. While PAYL proposes the use of n-gram analysis whose com-
putational cost rapidly increases for values of n greater than 2, the additional
computational cost related to the increase of the width “n” of the sliding
window in our approach is negligible. On the other hand, the 2− ν − gram
analysis in McPAD is an approximation of the n-gram analysis which re-
quires multiple classifiers to be implemented, while the proposed approach
models sequences of length n that can be processed serially by a single HMM.

Sequences Sampling. The above example shows that the proposed ap-
proach produces some redundancy, as the same byte appears in “n” se-
quences in O. We can easily observe that there is an overlap of n − 1 bytes
among a pair of consecutive sequences. In fact, the last n − 1 bytes of the
t − th sequence in the set O are the first n − 1 of the sequence t + 1.

As a consequence we expect the following behavior:

• If the distance i among sequences is small (e.g. 1, 2), then the proba-
bilities assigned to sequence t and t + i will be quite similar.

• If the distance i among sequences is large (e.g. i = n − 1), then the
probabilities assigned to sequence t and t+i could not be so close since
the overlap among sequences is very small.

This intuition is confirmed by the behavior shown in figure 7. We consid-
ered probabilities related to sequences of length n = 10, and we varied the
distance i from 1 (which means considering consecutive sequences) up to 9
(which means considering just one byte of overlap). Then, for each value of
i we calculated the average difference of the probabilities. The figure clearly

15

shows that the average difference among the probabilities and the standard
deviation both increase with the value of i. Thus, we can conclude that there
is some kind of “redundancy” in the information provided by consecutive
sequences.

Figure 7: Average and Standard Deviation of the “difference” among the probabilities
associated to sequences. The difference is calculated between the probability associated
to the sequence extracted at the step t of the “Feature Extraction” process and that
assigned by the same HMM to the sequence extracted at the step t+i. The figure refers
to the first day of legitimate traffic on the GT dataset.

We exploited this result to reduce the number of sequences analyzed
by the HMM. In particular we propose to randomly sample the sequences
generated by our system, and use them to classify the payload.

From a practical perspective, the randomization strategy we propose has
several outcomes. First of all, it speeds up the IDS as much as we reduce the
sampling ratio. Moreover, randomization might be also a defense strategy
against attempts of evasion [34]. As the subset of analyzed sequences is
chosen randomly for each payload, an attacker is unaware of the portions
of the payload used to classify it. Consequently, the evasion of the IDS is a
harder task. While this is an interesting issue, in this paper we are not able
to show any quantitative evaluation of the difficulty of evading the IDS.
On the other hand, reported experiments in sections 6.4 and 7 show the
performance of the system when 20%, 40%, 60% and 80% of sequences are
randomly chosen from the whole set of sequences.

16

4.2. Pattern Analysis
The input for this step is the set O of N sequences extracted from a

payload P . As the pattern to be classified by HMMPayl is the payload
P , we will now illustrate how we calculate the probability for P of being
emitted by the HMM.

First of all, one HMM is trained on sets of sequences extracted from
normal payloads according to the technique previously described. Then, at
detection time, for each payload P , the HMM calculates the probability of
emitting each one of the sequences inside O:

pj = P (oj |λ), j = 1, ...,N (7)

Thus, for each payload P , the HMM produces a set of N probabilities as-
sociated to the N sequences in O. A simple solution to obtain an overall
probability for P is to calculate the arithmetic mean of the output proba-
bilities:

P (O|λ) =
1
N

N∑

j=1

pj =
1
N

N∑

j=1

P (oj |λ) (8)

as the arithmetic mean provides an efficient and unbiased estimate.
The scheme of HMMPayl reported in figure 3 shows that K different

HMM are used in parallel during the Pattern Analysis step. We have pro-
vided in section 3.2.1 several reasons that make an ensemble of classifiers
more suitable than a single one. Consequently, we decided to make the
payload being analyzed in parallel by an ensemble of HMM. As each HMM
processes all the payload, all the HMM in the ensemble have the same num-
ber of states, and are trained on the same training set. The difference among
the HMM in the ensemble is in the random initialization of the A and B
matrices during the training phase, which produces different final matrices.
Summing up, each HMM receives as input the whole set of sequences O, and
produces as output a set of N probabilities. The set of output probabilities
from each HMM is the input for the “Sequences Probabilities Fusion” block
which calculates the arithmetic mean of the N probabilities produced by
each HMM. At the end of this step we obtain a vector of K probabilities
assigned to the payload by the K HMM.

4.3. Classification
At this level, the problem is that of combining the outputs of several

classifiers. We have already discussed in section 3.2 the reasons why a system
based on multiple classifiers should be preferred to a system based on a

17

single classifier. We would just remind here that both the accuracy and the
difficulty of evading the IDS benefit from such an approach [12, 16, 31].

Among all of the available techniques for combining an ensemble of clas-
sifiers we decided to use the static combination rules described in section
3.2.1, i.e., the minimum, the maximum, the mean, and the geometric mean
rules [30]. The output of the MCS block is thus the probability that the
payload P belongs to the normal traffic. A payload P is then classified as
normal or attack if the probability assigned by the system is respectively
above or below a predefined threshold. The choice of the threshold depends
on the accepted trade-off between detection and false positive rates.

4.4. Complexity Evaluation
Now we will provide an analysis of the computational complexity of the

HMMPayl algorithm. Since the training of HMMPayl is performed off-line,
here we evaluate the complexity of the detection phase only.

Given a payload P of length L and a value of n for the length of the
sequences extracted from the payload, the extraction of sequences from the
payload can be accomplished in O(L−n+1). Then, the number of sequences
extracted increases linearly with the length of the payload. Consider that
typical values for the length of the HTTP payload are in the order of several
hundreds of bytes. Thus a number of several hundreds of sequences has to
be extracted from the payload. On the contrary, in the case of PAYL a
number of features must be calculated which exponentially increases with
the value of n (it is 256n) [9]. In the case of McPAD the number of features
that must be calculated for each payload received by the IDS is 65536 (2562)
[12].

Once sequences have been extracted, the likelihood of each sequence
(that is the probability that a sequence is emitted by an HMM) has to
be calculated using the Forward-Backward procedure [18]. The Forward-
Backward procedure requires the calculation of n Forward variables plus the
calculation of n Backward variables. If s is the number of states of the HMM
and T is the length of the sequence to be processed, according to Rabiner
each one of the Forward and Backward variables required to calculate the
likelihood can be calculated in O(s2 ·T) [18]. Since in the case of HMMPayl
s = T = n, the computational cost becomes O(n3). Given that O(n3) is the
number of computations required for each variable, since for each sequence
we have to calculate 2 ·n variables, the number of computations required for
each sequence is O(n4). Since the number of sequences extracted from each
payload is N = L − n + 1 for each classifier within the ensemble a number
of operations O(N · n4) has to be performed.

18

5. Experimental Setup

This section is organized as follows. Subsections 5.1, 5.2 and 5.3 provide
some guidelines on how to setup the system, and the choices we made to
perform the reported experiments.

Subsection 5.4 describes the datasets used to validate the proposed model.
In particular we used different datasets of normal traffic, and attacks. Fi-
nally, Subsection 5.5 details the measures we used to evaluate the perfor-
mance of HMMPayl.

5.1. The width n of the sliding window
From the previous section, it should be clear that the larger the width of

the window, the more accurate the IDS. The experimental results reported in
the following section aim at confirming this hypothesis. We varied the value
of n from 2 to 10 to evaluate how the accuracy of HMMPayl increases with
the length of the sequences. It is also worth noting that further increase in
the window size does not provide significant gain in performance, as distant
bytes are loosely related.

5.2. Hidden Markov Models Parameters
In section 3.1 it has been shown that the performance of HMM are

affected by the choice of its parameters, namely (a) the number of hidden
states; (b) the initialization of emission and transition matrices. A brief
description on how to set these parameters follows.

Number of States. The estimation of the most appropriate number of hidden
states of an HMM for a given application is more art than science. Anyway,
there are several heuristics that allow building effective HMM. In particular,
we observed that a good choice of the number of hidden states is related to
the length of the sequences to be processed [16]. Thus, we have chosen to
build the HMM with a number of states exactly equal to the length n of
the sequences. Therefore, in our experiments the number of states varies in
the range from 2 to 10 according to the value of n. It is worth to notice
that all the HMM in the ensemble have the same number of states, the only
difference being the initialization of the matrices.

Initialization of Matrices. The behavior of an HMM resulting from the
training procedure depends on the training data as well as on the initial
values of the matrices A and B (see section 3.1). Among all the strategies
available to initialize the matrices A and B, we decided for the random ini-
tialization [18]. In fact, other strategies different from random initialization

19

generally try to take into account the structure of sequences to be modeled.
Since in HMMPayl this structure is arbitrary (as it depends from the value
of n) these strategies are not suitable for our purposes. Furthermore, ran-
dom initialization is a common practice in Pattern Recognition when the
selection of parameters can’t be driven by data.

5.3. Number of HMM
After some preliminary experiments we found that a number of HMM

K = 5 was a good compromise between system complexity and its ability
being accurate, hard to evade, and fast enough.

5.4. Datasets
In this section we describe the characteristics of the datasets we used

in our experiments. HMMPayl has been deeply tested on three different
datasets of normal traffic, and on five datasets containing different types of
attacks.

5.4.1. Normal Traffic
In our experiments three datasets of normal traffic have been employed,

one of them containing simulated traffic, while the other two contain real
traffic collected at academic institutions.

The dataset containing simulated traffic consists of the HTTP requests
extracted from the first week of the DARPA’99 dataset [35]. Altogether
it is composed of five entire days of simulated normal traffic to and from
an air force base. Although the DARPA dataset is outdated and has been
criticized for the way it was generated, to the best of our knowledge it was
the only public dataset of network traffic at the time we performed the
experiments [8, 36]. Very recently some researchers have made publicly
available a dataset of network traffic collected during a network warfare
competition (ITOC dataset) [37]. Anyway, it appeared too late to give us
the opportunity of including some results in this paper.

The other two datasets containing traces of real traffic have been col-
lected at two academical institutions. One dataset is made up of HTTP
requests towards the website of the College of Computing at the Georgia
Institute of Technology (GT), USA. The other dataset consists of requests
toward the website of the Department of Electrical and Electronic Engineer-
ing (DIEE) at the University of Cagliari, Italy. They consist respectively
of seven and six days of traffic. It is important to remark that both the
GT and the DIEE datasets are completely unlabeled. Anyway, it is reason-
able to assume that the vast majority of the traffic is made up of legitimate

20

Table 1: Number of packets and size (MB) of traces of normal traffic
DARPA DIEE GT

Day Size (MB) Packets Size (MB) Packets Size (MB) Packets
1 19 161,602 7.2 10,200 131 307,929
2 23 196,605 7.4 10,200 72 171,750
3 23 189,362 6,6 10,200 124 289,649
4 30 268,250 6 10,200 110 263,498
5 18 150,847 6.4 10,200 79 195,192
6 – – 6.7 10,763 78 184,572
7 – – – – 127 296,425

HTTP requests, and even if we cannot exclude the presence of attacks, they
would represent a very negligible fraction with respect to the normal traffic.
For this reason, we consider the possible fraction of attacks in the dataset
as noise. In fact, both networks are protected by firewalls and IDSs, and
in case of persistent intrusion attempts, there is usually evidence that an
attack is occurring. As any evidence has not been reported in the period
in which we collected the traffic, we assume that the level of noise in both
datasets is negligible. Therefore, in the following we consider the GT and
DIEE datasets as “clean” from known attacks for the purpose of measuring
the false positive rate.

The experiments have been carried out in the same way on all the three
datasets, both for training and testing. A k-fold cross validation has been
realized, using in rotation one day of traffic for training and all the remaining
days for testing purposes. Details about the number of packets and the size
(in MB) of each trace are provided in table 1.

5.4.2. Attack Datasets
We experimented HMMPayl with several datasets made up of the most

frequently observed attacks against Web applications. In particular, we
used a publicly available dataset of HTTP attacks provided by the authors
of [38]. We further created polymorphic variants of these attacks by using the
polymorphic engine CLET [39]. Moreover, we created a dataset of attacks
that exploited vulnerabilities of the Web applications executed by the Web
server at DIEE. With the exception for this last set of attacks, all the other
attacks used in the experiments are the same that have been used in [12].
For the sake of organizing the results, we grouped the attacks in a number of
datasets, each one containing attacks of the same category. In the following,
we will briefly provide a detailed description of each dataset.

• Generic Attacks. This dataset includes all the HTTP attacks pro-

21

vided by the authors of [38] plus a shell-code attack that exploits the
vulnerability MS03-022 of the Windows Media Service (WMS), which
was used in [40]. In total this dataset consists of 66 HTTP attacks.
Among these, 11 are shell-code attacks, i.e., attacks that carry ex-
ecutable code in the payload. The other attacks cause Information
Leakage, and Denial of Service (DoS).

• Shell-code Attacks. This dataset contains the 11 shell-code attacks
contained in the Generic Attacks dataset. Shell-code attacks are par-
ticularly dangerous because their objective is to inject executable code
and hijack the normal execution of the target application. Some fa-
mous worm, like Code-Red, for example, use shell-code attacks to
propagate.

• CLET Attacks. This dataset contains 144 polymorphic attacks gen-
erated using the polymorphic engine CLET [39]. We selected 8 among
the 11 Shell-code Attacks, and created polymorphic versions of each
attack using the payload statistics computed on each distinct day of
traffic from the DARPA, GT and DIEE datasets for training CLET’s
polymorphic engine. The total number of attacks generated by CLET
is equal to 144.

• XSS-SQL Attacks This dataset of attacks has been also used in [16].
It consists of a set of custom attacks that exploit vulnerabilities of the
Web applications executed by the Web Server at DIEE, the same Web
server used to collect the DIEE dataset of normal traffic. This set
of attacks has been created as follows. We selected a set of attacks
published on www.milw0rm.com, and used these attacks as the basis
on which building a set of attacks exploiting specific vulnerabilities
of the applications running on the Web server. The resulting dataset
consists of 19 SQL Injection attacks and 19 XSS attacks. References
for these attacks are reported in table 2, where details are given in
terms of the identifying number of the exploit, and the paper where
the vulnerability is described.

5.5. Performance Evaluation
5.5.1. ROC Curves

In order to validate the classification performance of our detector, we
use the Receiver Operating Characteristic (ROC) curve analysis, and the
related Area Under the ROC Curve (AUC). The ROC curve provides a way

22

Table 2: References for attacks inside XSS-SQL Dataset. Attacks are taken from
www.milw0rm.com. For each attack the number identifying the exploit and that of the
paper where the vulnerability is described are provided.

Attack Type Exploit N. Paper N.
SQL Injection 6512, 6510, 6502, 6490, 6469, 6467,

6465, 6449, 6336, 3490, 5507
16, 174, 202, 215

XSS 2776, 2881, 2987, 3405, 3490, 4681,
4989, 6332

162, 173, 192

to visually represent the trade-off between false positive and detection rates
by varying the detection threshold [41]. While the measure of accuracy
depends on a specific value of the detection threshold, the AUC summarizes
the classification performance of the classifier in the entire range [0, 1] of
the false positive rate, and can be interpreted as the probability of scoring
attack packets higher than legitimate packets (i.e., the higher the AUC, the
easier to distinguish attacks from normal traffic) [42].

One problem with the AUC for evaluating Intrusion Detection Systems
is that it is computed along the entire range [0, 1] of the false positive rate.
Because it is of no interest to evaluate the performance of an Intrusion
Detection System when a high number of false alarms are generated, we
focused our analysis on a small range of the false positive rate. In particular,
we computed the area under the ROC curve in the range [0, 0.1] of the
false positive rate, i.e., we do not take into account the performance of
the Intrusion Detection System for values of the false positive rate greater
than 10%. In order to obtain a performance value in the range [0, 1], we
normalized the “partial” AUC computed in [0, 0.1] by dividing it by 0.1.
In the following, we will denote the performance measured by the “partial”
AUC as AUCp.

Finally, as HMMPayl does not reconstruct HTTP sessions, we consider
a per packet detection rate. This means that the detection rate reported
in our experiments is related to the fraction of attack packets detected by
the IDS. This is a pessimistic estimate of the real detection rate that would
be calculated in terms of the fraction of attacks detected. In real cases, an
attack is considered to be detected if at least one of its packets is detected.

6. Experimental Results

This section shows the performance of HMMPayl, and it is organized
in five parts. Section 6.1 shows the performance of HMMPayl on both
Shell-code and CLET attacks, while sections 6.2 and 6.3 show the ability

23

of the system in detecting Generic and XSS-SQL attacks, respectively. The
behavior of the system when a randomly sampled subset of sequences are
used for classification is discussed in section 6.4. Section 6.5 reports the
upper bound in performance attained by the Ideal Score Selector. In Section
6.6 we evaluate the “sensitivity” of HMMPayl to the presence of anomalous
bytes within the payload. Section 6.7 provides a comparison of HMMPayl,
McPAD, and Spectrogram in terms of Detection Rate at fixed values of the
False Positive Rate. Finally, Section 6.8 gives an evaluation of the benefits
provided by the architecture based on Multiple Classifiers.

6.1. Shell-code and CLET dataset
The results attained on the Shell-code and the CLET datasets are shown

together, as the attacks in the CLET dataset have been obtained by modify-
ing Shell-code attacks with a polymorphic engine so that the n-gram statis-
tics match those of the normal traffic. Thus, all of the considered attacks aim
at injecting executable code into the target machine, where CLET attacks
should be more difficult to detect as they have been crafted to be similar to
normal traffic. Table 3 shows the average and the standard deviation of the
partial AUC (AUCp) calculated for the whole range of the considered length
of sequences (namely, from 2 to 10), and by considering all the combining
rules illustrated in section 4. Reported results show that, for this category
of attacks, the length of sequences does not affect the accuracy significantly,
as the values of the standard deviation are quite small. The reported values
of AUCp are quite high, thus pointing out that the proposed system is ef-
fective in detecting not only Shell-code attacks, but also their polymorphic
variants that have been crafted to evade the detection system.

Table 3: Resume of the values of AUCp of HMMPayl for Shell-code and CLET attacks
Minimum Maximum Mean GeoMean

DARPA
Attack AUCp σ AUCp σ AUCp σ AUCp σ

Shell-code 0.99909 0.0019376 0.91937 0.065238 0.97187 0.041408 0.99967 0.00030095
CLET 0.9984 0.002354 0.93551 0.05324 0.97553 0.039972 0.99935 0.00059503

DIEE
Attack AUCp σ AUCp σ AUCp σ AUCp σ

Shell-code 0.9966 0.0024 0.8812 0.0857 0.9319 0.0843 0.9945 0.0051
CLET 0.9974 0.0051 0.9128 0.0800 0.9495 0.0768 0.9989 0.0022

GT
Attack AUCp σ AUCp σ AUCp σ AUCp σ

Shell-code 0.9887 0.0035 0.8547 0.0937 0.9153 0.0659 0.9865 0.0043
CLET 0.9906 0.0087 0.8887 0.0825 0.9434 0.0596 0.9915 0.0094

Such a good result can be easily explained if we inspect figure 8 where the

24

distribution of 2-grams for the normal traffic and for the Shell-code attacks
is shown. The 2-grams of normal traffic are concentrated in the down-left
corner of the graph as the normal traffic contains only ASCII characters.
On the contrary, the bytes of Shell-code attacks are distributed evenly in
the range 0-255. As the training set is made up of normal traffic, the vast
majority of training sequences is made up of ASCII characters, and the
probability associated by HMM to non-ASCII symbols is close to zero. This
makes quite easy for HMMPayl to recognize Shell-code attacks.

Figure 8: Distribution of bytes from normal traffic (green) and from Shell-code attacks
(red).

Furthermore, the comparison of different combining rules shows that the
minimum rule allows attaining the best performance. This result is not
surprising, and it is also supported by a theoretical background [43]. In
fact, it is known that the minimum rule is conceptually equivalent to the
logic operator AND [44]. This means that combining the outputs of several
classifiers using a minimum rule sounds like finding a complete consensus
among all the classifiers in the ensemble.

Finally, in figure 9 we present an example of the ROC curves obtained
on the GT dataset obtained when a value n = 10 is chosen for the length
of the sequences. The figure shows the curves for the different days of
legitimate traffic, and in addition an average curve obtained averaging the
false positive and the detection rate on the different days. This plot contains
a remarkable result. In fact even when a very low false positive rate is
considered (approximately 10−4) HMMPayl achieves a very high detection
rate (higher than 0.85).

25

Figure 9: ROC curves for Shellcode Attacks on the DIEE dataset. The n parameter has
been set to 10. The “Average” curve has been obtained by averaging the detection rate
on the six days of network traffic. The minimum rule has been used to combine classifiers.

6.2. Generic Dataset
The “Generic” dataset includes different attack types, including Shell-

code attacks. While Shell-code attacks can be detected quite easily, other
attacks included in this dataset (e.g. DoS, URL decoding error, etc.) are
more difficult to be detected by IDS such as PAYL or McPAD, as it has
been pointed out in section 1. In particular, let us recall that the statistics
of a payload containing a Denial of Service attack (see for example figure 2)
do not significantly deviate from those of normal traffic. This implies that a
detailed model of the payload is necessary to achieve a high detection rate.
HMMPayl can provide such a detailed model as it allows attaining higher
detection rates than those of similar approaches in the literature.

Experimental results are presented in figure 10 where HMMPayl is com-
pared to McPAD on both the DARPA and the GT datasets. PAYL is not
considered in this comparison because it has been already shown that Mc-
PAD outperforms PAYL when these attacks are considered [12]. McPAD
performance is averaged on the number of clusters, and is obtained consid-
ering the combination rule that performed the better. The considered rules
are the product of probabilities on the DARPA dataset, and the minimum
on the GT and DIEE dataset respectively (see [12]). Reported results for
HMMPayl are related to the minimum rule.

The graph clearly shows that the AUCp attained by HMMPayl increases
with the value of n. This means that the larger the value of n, the better the

26

Figure 10: AUCp values for the Generic Attacks Dataset. The AUCp increases with the
length n of sequences extracted from the payload. HMMPayl classifiers are combined
using the minimum rule.

structure of the payload is inferred by the IDS. In particular, a value of n = 3
is sufficient for HMMPayl to outperform McPAD on the DARPA and DIEE
datasets, whereas on the GT dataset the same behavior is attained with a
value of n greater than or equal to 5. A possible explanation for this might
be the fact that the traffic in the GT dataset is more complex with respect
to that in the DARPA and DIEE datasets. As a consequence, a larger value
of n is needed to obtain an accurate model of the higher variability of the
payload observed in real traffic.

To conclude this section, let us have a look on figure 11 where we present
complete ROC curves. For false positives rates higher than 10−3 HMMPayl
attains a detection rate always higher than 0.85 which is a remarkable result
especially if we recall the characteristics of attacks within this dataset. As
the false positive rate reduces, the percentage of detected attacks obviously
decreases but still remains higher than 70% for a false positive rate of 10−4.

6.3. XSS and SQL-Injection Attacks
When HMMPayl is tested on Cross Site Scripting (XSS) and SQL-

Injection attacks, the behavior is similar to that exhibited by HMMPayl
when tested on “Generic Attacks” . This similarity is not surprising since
the structure of the payload of attacks belonging to the XSS-SQL dataset
is quite similar to that of normal traffic, as well as some of the attacks in-
side the “Generic Attacks” dataset (see section 6.2). Accordingly, the value

27

Figure 11: ROC curves for Generic Attacks on the DIEE dataset. The n parameter has
been set to 10. The “Average” curve has been obtained by averaging the detection rate
on the six days of network traffic. The minimum rule has been used to combine classifiers.

Figure 12: Values of AUCp for the XSS and SQL Injection Attacks. The AUCp increases
with the length n of sequences extracted from the payload. HMMPayl classifiers are
combined using the minimum rule.

of AUCp increases with the length n of the sequences extracted from the
payload (figure 12).

It is worth pointing out two aspects arising from the analysis of the

28

results reported in figure 12. One comment is related to the behavior on the
GT dataset, which is definitely the most difficult to model. In spite of this
difficulty, the AUCp provided by HMMPayl is larger than 0.85, and a value
of n = 6 is sufficient to attain this result.

Figure 13: ROC curves for XSS-SQL Attacks on the DIEE dataset. The n parameter has
been set to 10. The “Average” curve has been obtained by averaging the detection rate
on the six days of network traffic. The minimum rule has been used to combine classifiers.

Figure 13 shows the complete ROC curves. The detection rate is defi-
nitely good for values of the false positive rate higher than 10−3. Below this
value the average detection rate decreases even if on certain days of traffic
(e.g. “Day 6”) it remains quite good. These results are reasonable if we
consider how Cross-Site Scripting and SQL-Injection attacks work. In fact
they basically exploit flaws in the validation of the input provided to Web
applications. Then, they affect only a certain portion of the payload.

To conclude this section, we provide a comparison of HMMPayl with
McPAD [12], Spectrogram[15], and HMM-Web [16]. We averaged the per-
formance of each IDS on the six days of traffic from the DIEE dataset.

For the purpose of this comparison we set:

• A value of 8 for the ν parameter in McPAD. A 2-ν-gram analysis with
ν = 8 approximates a 10-gram analysis. We set to 0.01 the desired
false positive rate, the number of clusters to k = 160, and we used the
maximum rule for combining classifiers.

• A value of 10 for the gram-size in Spectrogram, and a number of 5
Markov-chains within the mixture.

29

Figure 14: Comparison of HMMPayl, Spectrogram, McPAD, and HMM-Web on the XSS-
SQL Injection attack dataset. ROC curves are averaged on the six days of the DIEE
dataset.

• A number of 5 HMM within each ensemble used by HMM-Web.

• A length n = 10 for the sequences analyzed by HMMPayl, and a
number of 5 HMM in the ensemble. We used the minimum rule to
combine HMM.

Results are shown in figure 14. As expected XSS and SQL-Injection
attacks are particularly hard for McPAD. In fact this IDS is able to detect
at most 50% of them producing a very high false positive rate. HMMPayl
performs significantly better since it is able to detect a high percentage of
attacks (more than 80%) even for low false positive rates. In fact, at 0.01 %
false positives rate the IDS is still able to detect more than 50% of the at-
tacks. With respect to Spectrogram we can observe that HMMPayl exhibits
almost the same performance for false positives rates higher than 0.1%. In
spite of this fact, as the false positive rate reduces HMMPayl performs signif-
icantly better. For instance, at 80% of detection rate the percentage of false
alarms generated by HMMPayl is approximately one order of magnitude
smaller than that generated by Spectrogram. More in general, the detection
rate achieved by HMMPayl decreases more slowly as the false positive rate
reduces. HMM-Web provided the highest performance since it has been able
to detect all the attacks even for very low false positives.

These results can be easily explained if we remind the architecture of
HMM-Web, McPAD, and Spectrogram that we described in section 2. In

30

!" #" $" %" &""
"'()

"'%

"'%)

"'*

"'*)

&
+,-..!/01-23445/67

8-9/-:45;-20<2+-=>-:/-7

8
5
94
?5
.2
3
@
A

2

2

BCC85D.2!2EF

BCC85D.2!2G3H83

!" #" $" %" &""
"'()

"'%

"'%)

"'*

"'*)

&
+,-,./012334056

7,.0,-348,19:1;,<=,-0,6

7
4
.3
/4
>1
2
?
@

1

1

ABB74C>1!1+D

ABB74C>1!1E2F72

!" #" $" %" &""
"'()

"'%

"'%)

"'*

"'*)

&
+,,!,-./0112345

67837912:7/;</,7=>79375

6
2
81
?2
@/
0
A
B

/

/

CDD62E@/!/FG

CDD62E@/!/H0I60

Figure 15: Performance of HMMPayl in terms of AUCp when a subset of sequences is
randomly chosen. The sampling varies between 20% and 100%. Classifiers are combined
using the minimum rule.

particular HMMPayl, McPAD, and Spectrogram rely on a single model that
analyses all the traffic toward the Web server, whereas HMM-Web has a
different set of models for each application on the Web server.

6.4. Sequences Sampling
In section 4 we proposed a randomization strategy to exploit the redun-

dancy in the sequences used to classify the payload. We expect a decrease in
performance related to the amount of reduction of the number of sequences
used in the classification phase. However, it is of interest to quantify the
amount of decrease, in order to measure the trade-off between computa-
tional complexity and accuracy. To this end, we tested the performance
of HMMPayl on the DARPA and GT datasets, as they are more difficult
to model than the DIEE dataset. Attacks from the Shell-code, XSS-SQL
and Generic datasets have been considered, while the ensemble of HMM has
been combined by the minimum rule. Experimental results are reported in
figure 15.

As we expected, the larger the percentage of sequences randomly sam-
pled, the larger the AUCp, the maximum AUCp being achieved when the
whole packet is considered (100%, i.e., no sampling is performed). Anyway

31

it is worth to remark that HMMPayl attains good values of AUCp even if a
very small percentage of sequences is considered (e.g. 20-30%). For example,
at a sampling rate of 20% on the GT dataset, the corresponding reduction
in AUCp is approximately 3% for Shell-code attacks, 6% for Generic attacks
and 9% for attacks into XSS-SQL. If the 40% of sequences are considered,
the loss reduces to 0.6% , 2% and 3% respectively. The performance loss on
the DARPA dataset is always smaller than that observed on the GT dataset
since the normal traffic in the DARPA dataset is more simple to be mod-
eled. We can also observe that the loss is larger for those attacks (such as
XSS) whose detection is strictly related to the amount of information that
can be extracted from the payload. It is straightforward to see that these
results make sense if they are compared with the reduction in the per-packet
processing time. By considering just the 20% of sequences, the cost of pay-
load processing is approximately reduced by a factor of 4. A more detailed
discussion on the computational cost will be provided in section 7.

Another point which is worth to remark is that the random sampling
of sequences might be also useful to make harder for an attacker the task
of evading the IDS. In principle, if we random sample the sequences, the
attacker does not know at which part of the payload we are looking at to
classify it. Then, he would be able to reproduce the whole payload structure
in order to evade the IDS. On the other hand, a deterministic sampling of the
sequences based on the characteristics of the attacks may allow reducing the
performance loss. However, the measure of the trade-off between detection
accuracy, difficulty of evasion, and computational cost is out of the scope of
this paper.

6.5. Ideal Score Selector
In this section we present the results attained by applying the “Ideal

Score Selector” described in section 3.2.2 compared with the results obtained
using the Minimum Rule. Reported results on classifier selection have been
carried out on the DARPA and the GT datasets, and aim to show the gain
in performance that could be attained by a careful design of the classifier
fusion module. In particular, as the performance attained by HMMPayl in
the case of Shell-code and CLET attacks are very high (see section 6.1),
the experiments in figure 16 are restricted to the Generic and XSS-SQL
attacks datasets. If the “right” HMM is selected, according to the rule
showed in section 3.2.2, it is possible to increase the AUCp up to 100%.
In other words, the use of the ensemble of HMM provide complementary
information that can be further exploited to increase the performance. It
is straightforward to see that if more complex combination rules are used

32

Figure 16: Comparison of the AUCp attained by the Ideal Score Selector with that attained
by the Minimum Rule. GT and DARPA datasets of normal traffic, and Generic and XSS-
SQL datasets of attacks are considered.

instead of the Minimum rule, the performance can be closer to those of
the Ideal Score Selector. However, the task of deploying the most suitable
combination rule could be as hard as the solution of the detection problem
itself, as it would require resorting to “trained” fusion rules [33].

6.6. Sensitivity to Anomalies
In this section we evaluate the sensitivity of HMMPayl to the presence

of anomalies within the payload. For the way it has been performed, this
evaluation can be considered also as a rough estimate of the robustness of
HMMPayl against attempts of evasion. For the purpose of this assessment
we created an ensemble of payloads containing artificial anomalies starting
from a set of legitimate payloads. Artificial anomalies have been employed
both for training and testing purposes in Intrusion Detection as well as in
Spam Detection and Biometrics [45, 46, 47].

We applied the following procedure to generate artificial anomalies. We
randomly selected from each payload a number of bytes according to a fixed
percentage of the size of the payload. Then, we replaced the value of each one
of the selected bytes by another byte value randomly chosen. More in detail,
we experimented with two different substitution strategies. In the first case,
the substitution has been performed replacing the value of the original byte
with a value in the range [0, 127]. This to simulate anomalies that contain
ASCII characters only. In the second case, the values of substituting bytes
have been randomly chosen within the range [0, 255].

We set a value for the threshold such that all the packets without modi-
fications are correctly classified as legitimate. For this value of the threshold

33

HMMPayl is able to detect approximately the 85% of the attacks within the
Shell-code dataset and the 70% of those within the Generic dataset. After,
we generated a different set of payloads containing anomalies simply vary-
ing the percentage of modified bytes. We experimented with a percentage
of modifications from 1% up to 60% with intermediate steps of 1% within
the range 1-10%, and with intermediate values 15, 20, 30, 40 and 50% in the
range 10-60%. We limited to 60% the percentage of modified bytes since
results related to higher percentages of modified bytes are not of interest for
this evaluation. In fact we are particularly interested in evaluating how the
IDS behaves when a small percentage of bytes is anomalous.

We expect the IDS achieving a high detection rate against those payloads
for which a large percentage of byte has been modified. In addition, we also
expect that payloads containing only ASCII characters will be more hardly
detected by the IDS, since they closely resemble legitimate payloads.

Figure 17: Sensitivity of HMMPayl to the presence of anomalies within the payload.
Experiments have been performed on the first day of the DIEE dataset. Sequences length
has been set to 6.

Experimental results are shown in figure 17. As expected, payloads
containing non ASCII characters are easily labeled as anomalous by the
IDS. The red curve is definitely more interesting. We can observe that to
be classified as legitimate with a probability higher than 0.9 a payload must
contain at least an 80% bytes that resembles the structure of a legitimate
payload.

Even if strategies of evasion more and more sophisticated are continu-
ously developed (e.g. [48]) we are quite confident that in a real case it would

34

be quite difficult for an attacker to produce attacks that are so similar to
legitimate payload.

6.7. Performance evaluation in terms of Detection Rate at fixed values of
the False Positive Rate

The measure of performance used so far provided an overall evaluation
of the IDS in the range of false alarm rates from 0% to 10%. While this is a
useful measure as its value does not depend on a particular threshold value,
it is also useful to inspect the behavior of HMMPayl for some particular
values of the threshold. A typical performance measure is the evaluation of
the detection rate by setting the threshold so that the false positive rate is
equal to 0.01 and 0.001, that is, 1% and 0.1% of false alarms, respectively.
These values are shown in table 4 for the DARPA and GT datasets of normal
traffic, and for all the attack datasets.

Table 4: HMMPayl detection rate at false positive rate = 0.01 and 0.001. Classifiers are
combined using the minimum rule. Performance refers to sequence of length n = 8.

Dataset False Positive Detection Rate
Desired Real XSS-SQL Generic Shell-code CLET

DARPA 0.01 0.0103 1 0.984 0.997 0.996
0.001 0.0013 0.996 0.941 0.989 0.984

GT 0.01 0.01 0.86 0.897 1 1
0.001 0.001 0.805 0.779 0.978 0.991

These results are consistent with those presented in the previous sec-
tions, thus confirming the validity of the proposed approach. In fact, when
a percentage of false alarms equals to 1% is allowed, HMMPayl detects all
the attacks in the Shell-code and CLET datasets. At the same percentage
of false alarms, approximately the 90% and 94% of attacks in the Generic
dataset is detected on the GT and DARPA datasets, respectively. When a
percentage of false alarms of 0.1% is allowed, the detection rate still remains
very high with respect to attacks in the Shell-code and CLET datasets. As
far as attacks in the Generic and XSS-SQL datasets are concerned, HMM-
Payl guarantees approximately a detection rate of 80% at least. These
results clearly point out the effectiveness of the proposed model.

Table 5 shows the comparison of HMMPayl with McPAD and Spectro-
gram on the DIEE dataset. The setup of HMMPayl, McPAD, and Spectro-
gram is the same considered in section 6.3.

Generally, at the same false positive rate HMMPayl attains a detection
rate higher with respect to McPAD. A particularly remarkable result is that
obtained on the XSS-SQL attack datasets. As expected HMMPayl performs

35

Table 5: HMMPayl, McPAD, and Spectrogram detection rate on the DIEE dataset at false
positive rate 0.01, 0.001, and 0.0001.

Desired FP IDS Real FP Detection Rate
XSS-SQL Generic Shell-code

0.01
HMMPayl (7.28 ·10−4) 0.844 0.926 1
McPAD (5.5 ·10−3) 0.504 0.824 0.998

Spectrogram (1.3 ·10−5) 0.849 - -

0.001
HMMPayl (3.57 ·10−4) 0.813 0.858 0.996
McPAD (1.69 ·10−7) 0.333 0.720 0.967

Spectrogram (4.69 ·10−6) 0.495 - -

0.0001
HMMPayl (3.9 ·10−6) 0.302 0.713 0.938
McPAD (3.45 ·10−7) 0.333 0.629 0.962

Spectrogram (5.62 ·10−6) 0.19 - -

definitely better than McPAD against these attacks. For instance, at 0.1% of
false positives HMMPayl is able to detect more than 81% of attacks whereas
McPAD only 33%. If we consider a 0.01% of false positives and the XSS-
SQL attack dataset, McPAD slightly outperforms HMMPayl. Nevertheless
it must be considered that since the detection rate achieved by both the IDS
is around 30%, this is not an operating point at which both the IDS can be
used in practice.

As we mentioned in section 2 Spectrogram is able to detect only attacks
that exploit flaws in the validation of the input provided to the Web appli-
cation. Then we restricted the comparison to the XSS-SQL attack dataset.
Results in table 5 show that at 1% of false positives rate HMMPayl and
Spectrogram achieve approximately the same detection rate (the difference
is around 0.5%). Nevertheless as the amount of false positive reduces HMM-
Payl performs significantly better than Spectrogram. In particular at 0.1%
of false positives rate, Spectrogram detects approximately 50% of attacks
whereas HMMPayl exhibits a detection rate higher than 80%.

6.8. Benefits of the MCS approach
In this section we briefly provide experimental evidence of the benefits

provided by the employment of multiple classifiers. Let us first observe
figure 18 where the partial AUC has been calculated considering a number
of classifiers from 1 to 5. Classifiers are combined using the minimum rule.
All the possible combinations of 2, 3, and 4 classifiers have been considered
and the average AUCp has been calculated. The figure refers to the first
day of the GT dataset and to a value n = 6 for the width of the window.
Results obtained on different days of traffic and for different values of n are
similar.

36

Figure 18: Increase of the AUCp with the number of classifiers. The AUCp is the average of
those obtained considering all the possible combinations of 2, 3, and 4 classifiers. Classifiers
are combined using the minimum rule.

It is important to observe that the AUCp increases as the number of
classifiers combined. We limited to five the number of classifiers in the
ensemble since from some preliminary experiments we observed that five was
a good trade-off between accuracy and computational cost. In particular
the figure clearly shows that the increase of the AUCp obtained adding
a classifier to the ensemble becomes smaller as the size of the ensemble
increases.

In addition, let us consider table 6 where the AUCp achieved by single
classifiers is compared to that achieved using all the five HMM and the
minimum rule.

Table 6: Value of the AUCp for individual classifiers. The MCS includes all of the five
HMM combined with the minimum rule.

HMM1 HMM2 HMM3 HMM4 HMM5 MCS
Generic 0.8036 0.8163 0.8564 0.8973 0.7944 0.918

XSS-SQL 0.8559 0.8584 0.6155 0.8221 0.6717 0.8546

With respect to XSS-SQL attacks we can observe that HMM3 and
HMM5 perform very poorly. In spite of their presence within the ensem-
ble, the AUCp achieved by the ensemble is only of a 0.44% smaller of that
achieved by the best classifier. This result is particularly interesting if we

37

consider that it is not trivial to establish which classifier will provide the
best performance on different test sets. This is clearly shown in table 6
where HMM3 performs very bad on XSS-SQL attacks while it is the second
best (after HMM4) on the Generic dataset. Further on the Generic attack
dataset, the AUCp obtained with the MCS is higher than that achieved by
the best classifier in the ensemble.

7. Analysis of the Computational Cost

In this section, we provide a brief discussion on the computational cost
of HMMPayl. At the moment, HMMPayl is just a set of scripts that imple-
ment the algorithm. This means that we do not implemented an optimized
software tool which is able to work on line, reading packets from the network
interface and assigning a probability to them. Consequently, the computa-
tional cost reported here is just an average per packet cost, that has been
calculated during the testing phase. No evaluation of the computational cost
has been made during the training phase, as it can be performed off-line,
and thus it is not required that the IDS is able to keep up with the network
speed.
Table 7 reports the characteristics of the machines on which we ran the ex-
periments.

Table 7: Workstation Specifics

CPU Memory O.S.
2 Dual Core AMD Opteron(tm) Processor 280 8 GB Debian 4.0

The scripts that implement the HMMPayl algorithm are based on two li-
braries:

• LibPcap [49], which is a network programming library used to extract
bytes from the HTTP payload.

• GHMM [50], which is a library that implements Hidden Markov Mod-
els. In particular, we used the Python wrapper of GHMM.

Tables 8, 9 and 10 show the performance of PAYL, McPAD, and
HMMPayl respectively in terms of average processing time per packet. It
can be observed that HMMPayl is definitely slower than PAYL, even in the
cases when HMMPayl process just a small subset of the sequences extracted
for each packet. On the other hand, performance of McPAD and HMMPayl
are quite similar and higher than those of PAYL. We are aware that the

38

Table 8: HMMPayl ’s average processing time per payload. The value between brackets
represents the number of payloads in the test dataset. The sampling ratio indicates the
percentage of sequences sampled from each payload with the randomization strategy.
HMMPayl uses m=5 HMM.

Sampling Ratio
Dataset 20 % 40 % 60 % 80 % 100%

DARPA (137,997) 7.48 ms 12.71 ms 17.70 ms 22.96 ms 27.51 ms
GT (1,068429) 8.37 ms 14.18 ms 20.72 ms 27.59 ms 32.66 ms

Table 9: McPAD ’s average processing time per payload. The value between brackets
represents the number of payloads in the test dataset. m is the number of classifiers used
by the IDS. For the definition of cluster please refer to [12].

FP = 0.001 FP = 0.001 FP = 0.01 FP = 0.01
Dataset Number of Clusters m=3 m=11 m=3 m=11

DARPA (137,997) k=10 3.07 ms 10.96 ms 3.16 ms 11.04 ms
k=40 3.04 ms 11.02 ms 3.11 ms 11.31 ms
k=160 3.13 ms 11.92 ms 3.81 ms 13.39 ms

GT (1,068429) k=10 4.28 ms 16.23 ms 4.94 ms 17.53 ms
k=40 4.16 ms 15.92 ms 6.14 ms 21.93 ms
k=160 4.95 ms 17.11 ms 10.49 ms 38.45 ms

Table 10: PAYL’s average processing time per payload. The value between brackets
represents the number of payloads in the test dataset.

Dataset Processing Time
DARPA (137,997) 0.039 ms

GT (1,068429) 0.032 ms

reported processing time of HMMPayl is not suitable for an IDS with real
time constraints. Anyway, we can provide several reasons that motivate the
slowness of our implementation:

Proof of concept The implementations of both HMMPayl and GHMM
are proof of concept, aimed at evaluating the performance in terms of
detection and false alarm rates.

Python Both HMMPayl and GHMM are written in Python, which is a
fast interpreted language but obviously it is not as fast as compiled
languages, such as C or C++.

These performance could be easily improved in several ways. Among them,
we can consider:

• Implementing the IDS in C or C + +. LibPcap, which is probably the
most widely used for network programming, is also written in C [51].

39

• Multi-thread processing. As in HMMPayl the payload analysis is made
by a set of classifiers, a parallel calculation which exploits recent multi-
core architectures would allow to speed-up the IDS.

For these reasons, we are very confident on the fact that a good implementa-
tion of the algorithm would be able to significantly improve the performance
in terms of processing time.

It is also worth remarking the benefits provided by the random sampling
in terms of computational cost. In section 6.4 we have already discussed
how the random sampling strategy affects the accuracy of HMMPayl. It has
been shown that even if a small percentage (20%) of the sequences extracted
from the packet is considered, the AUCp still remains very high, as being
approximately the 97% of that obtained considering the whole packet. At
the same time, as it can be observed from table 8 the IDS becomes 4 times
faster. For this reason, our opinion is that sampling the sequences produced
for each payload can be seen as a way to speed-up the IDS.
To conclude, we provide some informations on the amount of memory used
by the algorithm: the memory employed by the process was 2-3% of the on-
board memory (200-300 MB) which is a negligible amount respect to that
available on modern machines. The optimization of the code will reduce
certainly also the amount of memory employed.

8. Conclusions and Future Works

In this paper we proposed an IDS designed to detect attacks against Web
applications through the analysis of the HTTP payload by HMM. With this
work we provided for several innovative contribution.

First of all we proposed a new approach for extracting features which
exploits the power of HMM in modeling sequences of data. Reported ex-
periments clearly show that this approach provide a statistical model of
the payload which is particularly accurate, as it allows detecting attacks
effectively, while producing a low rate of false alarms. HMMPayl has been
thoroughly tested on three different datasets of normal traffic, and against
four different dataset of attacks. In particular, we showed that HMMPayl
was able to outperform other solutions proposed in the literature. In partic-
ular, HMMPayl is effective against those attacks such as Cross Site Scripting
and SQL-Injection, whose payload statistic is no significantly different from
that of normal traffic. These attacks are particularly hard to be detected,
as the performance of IDS such as PAYL and McPAD clearly show.

In addition, we also showed that the high computational cost of HMM-
Payl can be significantly reduced by randomly sampling a small percentage

40

of the sequences extracted from the payload, without significantly affecting
the overall performance in terms of detection and false alarm rates.

Moreover, as HMMPayl relies on the Multiple Classifier System paradigm,
we tested the performance attained by the Ideal Score Selector as a measure
of the maximum gain in performance that could be attained by exploit-
ing the complementarity of the HMM. Experimental results show that the
accuracy can be improved with an accurate design of the fusion stage.

It is clear that, despite the good results attained in our experiments, the
algorithm implemented by HMMPayl could be further improved. First of all,
HMMPayl does not take into account the length of the payload. As different
lengths of the payload produce significantly different statistics, clustering
the payloads by length, and using a different model for each cluster, would
improve the overall accuracy. The second improvement is related to the
random sampling strategy, as the whole sequence set could be randomly split
among all the classifiers in the ensemble. In such a way all the information
inside the payload would be used, where a single HMM is asked to process
a smaller number of sequences. Finally, the third improvement is related to
the use of trained combination rules instead of a static rule to combine the
HMM.

Acknowledgments

This research was sponsored by the RAS (Autonomous Region of Sar-
dinia) through a grant financed with the ”Sardinia PO FSE 2007-2013”
funds, and provided according to the L.R. 7/2007 for the ”Promotion of the
Scientific Research and of the Technological Innovation in Sardinia”. We
authorize the RAS to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors, and do not necessarily reflect the views of the RAS.

The authors would like to thank Prof. Salvatore J. Stolfo who gently
provided them a copy of Spectrogram for the purpose of their experiments.

References

[1] Internet Security Systems - IBM-ISS, X-force 2009 trend and risk re-
port, Tech. rep., IBM Global Technology Services (2010).

[2] Breach Security Inc. - ModSecurity: Open Source Web Application
Firewall, http://www.modsecurity.org (November 2009).

41

[3] F. Maggi, W. K. Robertson, C. Krügel, G. Vigna, Protecting a moving
target: Addressing web application concept drift, in: E. Kirda, S. Jha,
D. Balzarotti (Eds.), RAID, Vol. 5758 of Lecture Notes in Computer
Science, Springer, 2009, pp. 21–40.

[4] Breach Security Inc. - WebDefend (November 2009).
URL http://www.breach.com/products/webdefend.html

[5] Citrix Systems Inc. - Netscaler Application Firewall,
http://www.citrix.com (November 2009).
URL http://www.citrix.com/English/PS2/products/product.
asp?contentID=25636

[6] F5 Networks Inc. - BIG-IP Application Security Manager (November
2009).
URL http://www.f5.com/products/big-ip/product-modules/
application-security-manager.html

[7] C. Krügel, T. Toth, E. Kirda, Service specific anomaly detection for
network intrusion detection, in: SAC ’02: Proceedings of the 2002 ACM
symposium on Applied computing, ACM, New York, NY, USA, 2002,
pp. 201–208.

[8] M. V. Mahoney, Network traffic anomaly detection based on packet
bytes, in: SAC ’03: Proceedings of the 2003 ACM symposium on Ap-
plied computing, ACM, New York, NY, USA, 2003, pp. 346–350.

[9] K. Wang, S. J. Stolfo, Anomalous payload-based network intrusion de-
tection, in: E. Jonsson, A. Valdes, M. Almgren (Eds.), RAID, Vol. 3224
of Lecture Notes in Computer Science, Springer, 2004, pp. 203–222.

[10] K. Wang, G. F. Cretu, S. J. Stolfo, Anomalous payload-based worm
detection and signature generation, in: A. Valdes, D. Zamboni (Eds.),
RAID, Vol. 3858 of Lecture Notes in Computer Science, Springer, 2005,
pp. 227–246.

[11] K. Wang, J. J. Parekh, S. J. Stolfo, Anagram: A content anomaly
detector resistant to mimicry attack, in: D. Zamboni, C. Krügel (Eds.),
RAID, Vol. 4219 of Lecture Notes in Computer Science, Springer, 2006,
pp. 226–248.

[12] R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, W. Lee, Mcpad: A mul-
tiple classifier system for accurate payload-based anomaly detection,

42

Computer Networks 53 (6) (2009) 864 – 881, special Issue on Traffic
Classification and Its Applications to Modern Networks.

[13] RFC 2616 - Hypertext Transfer Protocol – HTTP/1.1 (1999).

[14] R. Tronci, G. Giacinto, F. Roli, Dynamic score selection for fusion
of multiple biometric matchers, in: R. Cucchiara (Ed.), ICIAP, IEEE
Computer Society, 2007, pp. 15–22.

[15] Y. Song, A. D. Keromytis, S. J. Stolfo, Spectrogram: A mixture-of-
markov-chains model for anomaly detection in web traffic, in: NDSS,
The Internet Society, 2009.

[16] I. Corona, D. Ariu, G. Giacinto, HMM-Web: A framework for the de-
tection of attacks against web applications, in: Communications, 2009.
ICC ’09. IEEE International Conference on, 2009, pp. 1–6.

[17] M. Damashek, Gauging similarity with n-grams: Language-
independent categorization of text, Science 267 (5199) (1995) 843–848.

[18] L. Rabiner, A tutorial on hidden markov models and selected appli-
cations in speech recognition, Proceedings of the IEEE 77 (2) (1989)
257–286.

[19] S. Günter, H. Bunke, Optimizing the number of states, training iter-
ations and gaussians in an hmm-based handwritten word recognizer,
in: Proceedings of the Seventh International Conference on Document
Analysis and Recognition, IEEE Computer Society, 2003, p. 472.

[20] R. Durbin, S. Eddy, A. Krogh, G. Mitchison, Biological sequence anal-
ysis, Cambridge University Press, 2006.

[21] C. Warrender, S. Forrest, B. Pearlmutter, Detecting intrusions using
system calls: alternative data models, in: Security and Privacy, 1999.
Proceedings of the 1999 IEEE Symposium on, 1999, pp. 133–145.

[22] S.-B. Cho, S.-J. Han, Two sophisticated techniques to improve HMM-
based intrusion detection systems, in: G. Vigna, E. Jonsson, C. Krügel
(Eds.), RAID, Vol. 2820 of Lecture Notes in Computer Science,
Springer, 2003, pp. 207–219.

[23] D. Gao, M. Reiter, D. Song, Beyond output voting: Detecting compro-
mised replicas using HMM-based behavioral distance, Dependable and
Secure Computing, IEEE Transactions on 6 (2) (2009) 96–110.

43

[24] C. Kruegel, G. Vigna, Anomaly detection of web-based attacks, in:
CCS ’03: Proceedings of the 10th ACM conference on Computer and
communications security, ACM, New York, NY, USA, 2003, pp. 251–
261.

[25] C. Y. Suen, n-gram statistics for natural language understanding and
text processing, Pattern Analysis and Machine Intelligence, IEEE
Transactions on PAMI-1 (2) (1979) 164–172.

[26] P. Fogla, W. Lee, Evading network anomaly detection systems: for-
mal reasoning and practical techniques, in: CCS ’06: Proceedings of
the 13th ACM conference on Computer and communications security,
ACM, New York, NY, USA, 2006, pp. 59–68.

[27] L. Baum, T. Petrie, G. Soules, N. Weiss, A maximization technique
occurring in the statistical analysis of probabilistic functions of markov
chains, The Annals of Mathematical Statistics 41 (1) (1970) 164–171.

[28] L. Baum, J. Egon, An inequality with applications to statistical esti-
mation for probabilistic function of a markov process and to a model
for ecology, Bulletin American Metereology Society 73 (1967) 360–363.

[29] L. Baum, G. Sell, Growth functions for transformations on manifolds,
Pacific Journal of Mathematics 27 (2) (1968) 211–227.

[30] L. Kuncheva, Combining Pattern Classifiers, Wiley, 2004.

[31] I. Corona, G. Giacinto, C. Mazzariello, F. Roli, C. Sansone, Informa-
tion fusion for computer security: State of the art and open issues,
Information Fusion 10 (2009) 274–284.

[32] T. G. Dietterich, Ensemble methods in machine learning, in: J. Kittler,
F. Roli (Eds.), Multiple Classifier Systems, Vol. 1857 of Lecture Notes
in Computer Science, Springer, 2000, pp. 1–15.

[33] R. Duin, The combining classifier: to train or not to train?, in: Pat-
tern Recognition, 2002. Proceedings. 16th International Conference on,
Vol. 2, 2002, pp. 765–770 vol.2.

[34] B. Biggio, G. Fumera, F. Roli, Adversarial pattern classification using
multiple classifiers and randomisation, in: N. da Vitoria Lobo, T. Kas-
paris, F. Roli, J. T.-Y. Kwok, M. Georgiopoulos, G. C. Anagnostopou-
los, M. Loog (Eds.), SSPR/SPR, Vol. 5342 of Lecture Notes in Com-
puter Science, Springer, 2008, pp. 500–509.

44

[35] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, K. Das, The 1999
darpa off-line intrusion detection evaluation, Computer Networks 34 (4)
(2000) 579 – 595, recent Advances in Intrusion Detection Systems.

[36] J. McHugh, Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by Lincoln Laboratory, ACM Transactions on Information and System
Security 3 (4) (2000) 262–294.

[37] B. Sangster, T. O’Connor, T. Cook, R. Fanelli, E. Dean, J. Adams,
C. Morrell, G. Conti, Toward instrumenting network warfare competi-
tions to generate labeled datasets, in: Security’s Workshop on Cyber
Security Experimentation and Test (CSET), USENIX, 2009.

[38] K. L. Ingham, H. Inoue, Comparing anomaly detection techniques for
HTTP, in: C. Krügel, R. Lippmann, A. Clark (Eds.), RAID, Vol. 4637
of Lecture Notes in Computer Science, Springer, 2007, pp. 42–62.

[39] T. Detristan, T. Ulenspiegel, Y. Malcom, M. Underduk, Polymorphic
shellcode engine using spectrum analysis, Phrack 0x0b (0x3d).

[40] R. Perdisci, G. Gu, W. Lee, Using an ensemble of one-class svm clas-
sifiers to harden payload-based anomaly detection systems, in: Data
Mining, 2006. ICDM ’06. Sixth International Conference on, 2006, pp.
488–498.

[41] A. P. Bradley, The use of the area under the roc curve in the evaluation
of machine learning algorithms, Pattern Recognition 30 (7) (1997) 1145
– 1159.

[42] C. Cortes, M. Mohri, Confidence intervals for the area under the roc
curve, in: Advances in Neural Information Processing Systems (NIPS
2004), Vol. 17, MIT Press, 2005.

[43] B. Biggio, G. Fumera, F. Roli, Multiple classifier systems for adversarial
classification tasks, in: J. A. Benediktsson, J. Kittler, F. Roli (Eds.),
MCS, Vol. 5519 of Lecture Notes in Computer Science, Springer, 2009,
pp. 132–141.

[44] L. Kuncheva, Fuzzy Classifier Design, Vol. 49 of Studies in Fuzziness
and Soft Computing, Springer-Verlag, 2000.

45

[45] W. Fan, M. Miller, S. Stolfo, W. Lee, P. Chan, Using artificial anoma-
lies to detect unknown and known network intrusions, Knowledge and
Information Systems 6 (5) (2004) 507–527.

[46] A. Kolcz, C. H. Teo, Feature weighting for improved classifier robust-
ness, in: Sixth Conference on Email and Anti-Spam (CEAS), Mountain
View, CA, USA, 2009.

[47] R. N. Rodrigues, L. L. Ling, V. Govindaraju, Robustness of multimodal
biometric fusion methods against spoof attacks, Journal of Visual Lan-
guage and Computing 20 (3) (2009) 169–179.

[48] J. Mason, S. Small, F. Monrose, G. MacManus, English shellcode, in:
CCS ’09: Proceedings of the 16th ACM conference on Computer and
communications security, ACM, New York, NY, USA, 2009, pp. 524–
533.

[49] Libpcap: Network programming library, http://www.tcpdump.org.

[50] Ghmm: General hidden markov model library, http://ghmm.org/.
URL http://ghmm.org/

[51] L. MartinGarcia, Programming with libpcap - sniffing the network
from our own application, Hakin9 Magazine (February 2008).
URL http://recursos.aldabaknocking.com/
libpcapHakin9LuisMartinGarcia.pdf

46

